miércoles, 2 de octubre de 2013

Los púlsares evolucionan y pueden volver a su estado original.

 En abril de 2013 un grupo de astrofísicos observó que la estrella de neutrones IGR J18245‐2452 –situada a 18.000 años luz de la Tierra, en la constelación de Sagitario– se comportaba como un púlsar de rayos X. Al compararlo con los catálogos estelares, descubrieron que este objeto se había caracterizado previamente como un radio púlsar.

No obstante, poco más de dos semanas después, el objeto volvía a comportarse según su clasificación original al volver a emitir ondas de radio. Así lo recoge el estudio que publica ahora la revista Nature.

Los observatorios espaciales Integral y XMM-Newton de la ESA permitieron detectar el púlsar en esa fase crítica de su evolución, cuando pasa de emitir pulsos de rayos X a emitir ondas de radio.

El investigador del CSIC en el Instituto de Ciencias del Espacio Alessandro Papitto, que ha dirigido la investigación, afirma que esta es la primera vez que se observa a un mismo púlsar experimentar dos fases distintas de emisión ” y, por tanto, supone el hallazgo del 'eslabón perdido' de las estrellas de neutrones”.

Actualmente, la mayoría de los púlsares se clasifican en dos grupos en función de su comportamiento y del tipo de radiación periódica que emiten, la cual puede ser de radio o de rayos X.
 
 Los púlsares de rayos X pertenecen a sistemas binarios en los que la estrella que les acompaña vierte materia sobre ellos, lo que acelera su periodo de rotación y provoca su emisión de rayos X. Por su parte, los radio púlsares emiten radiación, debido a la rotación de su campo magnético.

Papitto explica que al principio de la década de los años 80 "se descubrió el primer radio púlsar con un periodo de rotación de milisegundos”. Se trataba de la velocidad de rotación más alta observable en la superficie de una estrella.

martes, 1 de octubre de 2013

Descubrimiento del primer pulsar

La señal del primer pulsar que se detectó, tenía un intervalo exacto de 1,33730113 segundos. Este tipo de señales únicamente se pueden detectar utilizando un radiotelescopio.
De hecho, cuando en julio de 1967 Jocelyn Bell y Antony Hewish detectaron estas señales de radio de corta duración, pensaron que podrían haber establecido contacto con una civilización extraterrestre, dada la precisa regularidad de la emisión.
Llamaron tentativamente a su fuente LGM (Little Green Men).
Tras una rápida búsqueda se descubrieron 3 nuevos pulsares emitiendo en radio a diferentes frecuencias por lo que pronto se concluyó que estos objetos debían ser producto de fenómenos naturales.
Diagrama de un Pulsar
Anthony Hewish recibió en 1974 el Premio Nobel de Física por este descubrimiento y por el desarrollo de su modelo teórico. Jocelyn Bell no recibió condecoración por ser únicamente una estudiante de doctorado, aunque fuera ella quien advirtió la primera señal de radio.

Hoy en día se conocen más de 600 pulsares con períodos de rotación diversos que van desde el milisegundo a unos pocos segundos con un período promedio de rotación de 0,65 segundos. La precisión con la que se conoce la rotación de estos objetos es de una parte en 100 millones. Los períodos de rotación tan breves implican tamaños para estas estrellas de unos pocos miles de Km.
El más famoso de todos los pulsares es quizás el que se encuentra en el centro de la Nebulosa del Cangrejo denominado PSR0531+121 con un período de rotación de 0,033 s.
Este pulsar se encuentra en el mismo punto en el que los astrónomos chinos registraron una brillante supernova en el año 1054 y permite establecer la relación supernova y estrella de neutrones como remanente final, esta segunda, de la explosión producida por la supernova.

Planetas pulsar

El primer grupo de planetas extrasolares fue descubierto orbitando un pulsar: PSR B1257+12


Este es un pulsar cuyo período es de milisegundos.
Las pequeñas variaciones de su período de emisión de radio sirvieron para detectar una ligerísima oscilación periódica del pulsar con una amplitud máxima en torno a 0,7 m/s. Los radioastrónomos Aleksander Wolszczan y Dale A. Frail interpretaron estas observaciones como causadas por un grupo de tres planetas en órbitas casi circulares a 0,2, 0,36 y 0,47 UA del pulsar central y con masas de 0,02, 4 y 4 masas terrestres respectivamente.
Este tipo de descubrimiento, altamente inesperado, causó un gran impacto en la comunidad científica.
 

¿Dónde están los púlsares?


 Los pulsares se han encontrado principalmente en la Vía Láctea. Un escrutinio completo es imposible, ya que los pulsares débiles solo pueden ser detectados si están cercanos.

Los sondeos de radio ya han cubierto casi todo el cielo. Sus distancias pueden medirse a partir de un retardo en los tiempos de llegada de los pulsos observados en las radio frecuencias bajas; el retardo depende de la densidad de los electrones en el gas interestelar, y de la distancia recorrida.

Extrapolando a partir de esta pequeña muestra de pulsares detectables, se estima que hay al menos 200.000 pulsares en toda nuestra Galaxia. Considerando aquellos pulsares cuyos haces de faro no barren en nuestra dirección, la población total debería alcanzar un millón.

Cada pulsar emite durante cerca de cuatro millones de años; después de este tiempo ha perdido tanta energía rotacional que no puede producir pulsos de radio detectables. Si conocemos la población total (1.000.000), y el tiempo de vida (4.000.000 de años), podemos deducir que un nuevo pulsar debe nacer cada cuatro años, asumiendo que la población permanece estable.

Recientemente se han encontrado pulsares en cúmulos globulares. Se piensa que han sido formados allí por la acreción de materia en estrellas enanas blancas en sistemas binarios.

Otros pulsares nacen en explosiones de supernovas. Si todos los pulsares fuesen nacidos en explosiones de supernovas, podríamos predecir que debería haber una supernova en nuestra Galaxia cada cuatro años, pero esto no está todavía claro.
Aquí,un video sobre
(Here, a video on)

El Universo : Pulsares y Qùasares 

(The Universe: Pulsars and Quasars)